Scanning Eye Movements in Homonymous Hemianopia Documented by Scanning Laser Ophthalmoscope

Retinal Perimetry

Richard J. Jamara, OD, FAAO, New England College of Optometry, Boston, MA

Eli Peli, OD, FAAO, Frans Van de Velde, MD

Schepens Eye Research Institute, Boston, MA

Abstract

Purpose: Young patients with homonymous hemianopia frequently develop scanning eye movements, which are a type of saccadic deviation, that allows hemianopic patients to see into the blind field. The study aimed to document these eye movements using scanning laser ophthalmoscope.

Methods: Two patients with left hemianopia were examined. One patient was young, age 17, with hemianopia since age 12, and the other was an adult age 42, with hemianopia since age 40. The visual fields of both patients were measured using Humphrey 100 full field automated perimetry, Goldmann perimetry, and with the Scanning Laser Ophthalmoscope (SLO). In SLO, direct retinal observations permitted us to correct for eye movements during perimetry.

Results: The young patient showed an extension of the visual field across the vertical midline on both Humphrey and Goldmann. The adult patient’s field respected the vertical midline. SLO retinal perimetry confirmed that the young patient’s field was indeed hemianopic as was the adult’s. The apparent extensions were due to scanning eye movements and variable fixation positions were documented as part of the SLO examination.

Conclusion: Hemianopic adaptation with eye movements may be interpreted as vision restoration when measured by conventional perimetry. The SLO retinal perimetry may separate real visual restoration from the artifact caused by eye movements. Field extension due to scanning eye movements may improve the visual function just as much as actual field restoration might for homonymous hemianopia patients.

Introduction

Homonymous hemianopia is a loss of sight in one half of the visual field of both eyes. When this is the result of stroke or trauma sometimes the blind field may be restored in part. The restoration can be the result of spontaneous recovery, or an artifact of the perimetry. Scanning eye movements may appear to restore the blind field. This can be confused with spontaneous recovery. Young patients with homonymous hemianopia frequently develop scanning eye movements as an adaptation. We demonstrate that the Scanning Laser Ophthalmoscope (SLO) could differentiate between spontaneous restoration and apparent recovery secondary to eye scanning. In the SLO, direct retinal observation permits us to correct for eye movements during perimetry.

Methods

Two patients with left homonymous hemianopia requested visual field testing to determine their eligibility for a driver’s license. The visual fields of both patients were tested using Humphrey Field Analyzer: Static perimetry, full field 120 point Screening Test. Performed monocularly with standard stimulus III, while Goldmann Perimeter: Kinetic perimetry. With white IV stimulus for each eye and binocular field.

The scanning laser ophthalmoscope may present visual stimuli on the patient’s retina at light levels that are within normal environmental limits and safe for continuous exposure. The investigator may view and document the location of the stimulus on the patient’s retina as well as the patient’s fixation during the actual exam. The results can be recorded as a video image demonstrating both the perimetric results and the location of the fixation target on the patient’s retina at the time of response.

Case 1:

Scanning example

J.A., a 17 y.o., had a brainstem hemorrhage at age 12. He presented with clearly visible eye scanning enabling him to see well into the left visual field on confrontation visual field measurements.

Case 2:

Control without scanning

A.A., a 42 y.o., suffered a recent stroke that resulted in a complete left homonymous hemianopia. A.A. did not appear to develop enhanced scanning.

Results

The SLO results confirm that the expanded field for J.A. was a result of scanning eye movements and not a real restoration of the blind field. A similar case was reported by Peli.

Conclusion

Hemianopic adaptation with eye movements may be interpreted as vision restoration when measured by conventional perimetry. The SLO retinal perimetry may identify and separate real visual restoration from the artifact caused by eye movements. Field extension due to scanning eye movements may improve the visual function just as much as actual field restoration might for homonymous hemianopia patients. Methods for training in scanning eye movements may serve as a useful rehabilitation tool.

References